The generating series of Gromov-Witten invariants of a Calabi-Yau manifold are a priori defined as a formal series in the Novikov variable. The analytic properties of them (e.g., exhibited by Givental's I-functions at genus zero) tell that these formal series can actually be extended to complex-analytic objects living on a small neighborhood of the so-called large volume limit on the Kahler moduli space. Mirror symmetry   predicts that they are algebraic objects such as sections of certain vector bundles over the moduli of complex structure of the mirror Calabi-Yau manifold. 


 


I will describe  algebraic/geometric properties of these generating series, using examples such as elliptic curves and quintic threefolds. For the elliptic curve case we shall see that these series are (quasi-)modular forms which are fundamental objects in the study of tradictional number theory. The Gromov-Witten generating series of more general Calabi-Yau manifolds can be naturally regarded as generalizations of (quasi-)modular forms.
10月26日
11:25am - 12:25pm
地點
Room 1410, Academic Building (Lifts 25-26)
講者/表演者
Prof. Jie Zhou
Yau Mathematical Sciences Center, Tsinghua University
主辦單位
Department of Mathematics
聯絡方法
mathseminar@ust.hk
付款詳情
對象
Alumni, Faculty and Staff, PG Students, UG Students
語言
英語
其他活動
7月14日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...
5月15日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...