Motivated by the iterative nature of training neural networks, we ask: If the weights of a neural network are updated using the induced gradient on an image of a tiger, how does this update impact the prediction of the neural network at another image (say, an image of another tiger, a cat, or a plane)? To address this question, I will introduce a phenomenon termed local elasticity. Roughly speaking, our experiments show that modern deep neural networks are locally elastic in the sense that the change in prediction is likely to be most significant at another tiger and least significant at a plane, at late stages of the training process. I will illustrate some implications of local elasticity by relating it to the neural tangent kernel and improving on the generalization bound for uniform stability. Moreover, I will introduce a phenomenological model for simulating neural networks, which suggests that local elasticity may result from feature sharing between semantically related images and the hierarchical representations of high-level features. Finally, I will offer a local-elasticity-focused agenda for future research toward a theoretical foundation for deep learning. This talk will be based on the following three papers:



https://arxiv.org/abs/1910.06943



https://arxiv.org/abs/2010.11775



https://arxiv.org/abs/2010.13988

11月20日
10:30am - 11:50am
地點
https://hkust.zoom.us/j/5616960008 (Passcode: math6380p)
講者/表演者
Prof. Weijie SU
University of Pennsylvania
主辦單位
Department of Mathematics
聯絡方法
付款詳情
對象
Alumni, Faculty and staff, PG students, UG students
語言
英語
其他活動
3月24日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...
11月22日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...