Motivated by the iterative nature of training neural networks, we ask: If the weights of a neural network are updated using the induced gradient on an image of a tiger, how does this update impact the prediction of the neural network at another image (say, an image of another tiger, a cat, or a plane)? To address this question, I will introduce a phenomenon termed local elasticity. Roughly speaking, our experiments show that modern deep neural networks are locally elastic in the sense that the change in prediction is likely to be most significant at another tiger and least significant at a plane, at late stages of the training process. I will illustrate some implications of local elasticity by relating it to the neural tangent kernel and improving on the generalization bound for uniform stability. Moreover, I will introduce a phenomenological model for simulating neural networks, which suggests that local elasticity may result from feature sharing between semantically related images and the hierarchical representations of high-level features. Finally, I will offer a local-elasticity-focused agenda for future research toward a theoretical foundation for deep learning. This talk will be based on the following three papers:



https://arxiv.org/abs/1910.06943



https://arxiv.org/abs/2010.11775



https://arxiv.org/abs/2010.13988

11月20日
10:30am - 11:50am
地点
https://hkust.zoom.us/j/5616960008 (Passcode: math6380p)
讲者/表演者
Prof. Weijie SU
University of Pennsylvania
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, PG students, UG students
语言
英语
其他活动
10月10日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Use of Large Animal Models to Investigate Brain Diseases
Abstract Genetically modified animal models have been extensively used to investigate the pathogenesis of age-dependent neurodegenerative diseases, such as Alzheimer (AD), Parkinson (PD), Hunti...
7月14日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...