欢迎

启发可持续的科研革新文化。

突破科研界限,追求新发现及建立崭新的研究模式。

关于理学院
理学院致力发展最尖端的科研项目,力求取得突破性的研究成果,建立最新的科研典范。
在教学方面,全面而高质素的课程特别着重培养学生的恒毅力、好奇心和创意…
理学院致力营造一个富活力的学习环境,并着重学术成就、创新及合作。
王殷厚
理学院院长
活动
研讨会, 演讲, 讲座 | 2023年03月14日
IAS Center for Quantum Technologies Seminar Series - New Platforms for Quantum Sensing and Quantum Computing
Abstract The nitrogen vacancy (NV) center in diamond exhibits spin-dependent fluorescence and long spin coherence times under ambient conditions, enabling applications in quantum information processing and sensing. NV centers near the surface can have strong interactions with external materials and spins, enabling new forms of nanoscale spectroscopy. However, NV spin coherence degrades within 100 nanometers of the surface, suggesting that diamond surfaces are plagued with ubiquitous defects. The speaker will describe her research group’s recent efforts to correlate direct materials characterization with single spin measurements to devise methods to stabilize highly coherent NV centers within nanometers of the surface. They deploy these coherent shallow NV centers for a new nanoscale sensing technique, whereby they use covariance measurements of two or more NV centers to measure two-point magnetic field correlators. The speaker will also discuss steps towards controlling diamond surface chemistry to develop NV centers as a platform for nanoscale NMR. The speaker’s approach for correlating surface spectroscopy techniques with single qubit measurements to realize directed improvements is generally applicable to many systems. Separately, the speaker will describe their recent efforts to tackle noise and microwave losses in superconducting qubits. Building large, useful quantum systems based on transmon qubits will require significant improvements in qubit relaxation and coherence times, which are orders of magnitude shorter than limits imposed by bulk properties of the constituent materials. This indicates that loss likely originates from uncontrolled surfaces, interfaces, and contaminants. Previous efforts to improve qubit lifetimes have focused primarily on designs that minimize contributions from surfaces. However, significant improvements in the lifetime of planar transmon qubits have remained elusive for several years. The speaker’s research group has recently fabricated planar transmon qubits that have both lifetimes and coherence times exceeding 0.3 milliseconds by replacing niobium with tantalum in the device. Following this discovery, they have parametrized the remaining sources of loss in state-of-the-art devices using systematic measurements of the dependence of loss on temperature, power, and geometry. This parametrization, complemented by direct materials characterization, allows for rational, directed improvement of superconducting qubits. About the Speaker Prof. Nathalie DE LEON received her BS in Chemistry from Stanford University in 2004 and her PhD in Chemical Physics from Harvard University in 2011. She then worked as a Center for Integrated Quantum Materials and Element Six Postdoctoral Fellow at Harvard. In 2016, she joined the faculty of Princeton University as an Assistant Professor in the Department of Electrical and Computer Engineering and is currently an Associate Professor there. Prof. De Leon’s research is focused on building quantum technologies with solid state defects and new material systems for superconducting qubits. She is currently the Materials Thrust Leader of the Co-design Center for Quantum Advantage, a National Quantum Information Science Center under the US Department of Energy. Prof. De Leon is the recipient of 2016 US Air Force Office of Scientific Research Young Investigator Award and 2017 Sloan Research Fellowship. In 2018, she received the US National Science Foundation’s Faculty Early Career Development Program Award, the US Defense Advanced Research Projects Agency’s Young Faculty Award, and the US Department of Energy’s Early Career Award. In 2023, she was awarded the Rolf Landauer and Charles H. Bennett Award in Quantum Computing by the American Physical Society for her substantial contributions to the field of experimental quantum information science. For Attendees' AttentionThis talk will be held online via Zoom. To attend, please join the Zoom meeting at https://hkust.zoom.us/j/92503111371 (Meeting ID: 925 0311 1371 / Passcode: 475970). About the Center For more information, please refer to the center website at https://iascqt.hkust.edu.hk/.
研讨会, 演讲, 讲座 | 2023年02月24日
IAS Center for Quantum Technologies Seminar Series - Quantum Sensing of Quantum Materials
Abstract Exploring new class of quantum materials with advanced magnetic and electronic properties has been a central focus of modern condensed matter physics over the past decades. The success of these efforts relies simultaneously on advances in theory, material synthesis, and development of new, sensitive metrology tools capable of diagnosing the key material properties at the nanoscale. Nitrogen-vacancy (NV) centers, optically active atomic spin defects in diamond, are naturally relevant in this context due to their excellent quantum coherence, unprecedented spatial and field sensitivity, and remarkable functionality over broad experimental conditions. Serving as a local probe of multiple degrees of freedom, NV centers are ideally posed to investigate the fundamental correlations between microscopic spin, charge, and thermal behaviors in condensed matter systems. In this talk, the speaker will present her research group’s recent work on using NV centers to perform quantum sensing of emergent quantum materials. Specifically, they have utilized NV centers to visualize the exotic spin properties of topological magnetic materials and antiferromagnetic insulators, revealing the fundamental spin transport and dynamic physics at the nanoscale. Taking advantage of coherent coupling between NV centers and nanomagnetic devices, they achieved electric field induced coherent control of NV centers, promoting the role of NV centers at the forefront research of quantum science and technologies. Lastly, the speaker will briefly discuss their ongoing efforts on exploring 2D quantum sensing technologies using emergent color centers beyond NVs. About the Speaker Prof. DU Chunhui received her BS in Physics from East China Normal University in 2010 and her PhD in Physics from The Ohio State University in 2015. Before joining the University of California, San Diego (UCSD) in 2019, she was a Postdoctoral Fellow at Harvard University. She is currently an Assistant Professor of Physics at UCSD. Prof. Du’s current research focuses on developing color center-based quantum sensing technologies for studying emergent condensed matter systems. She is the recipient of the US National Science Foundation Career Award (2021), US Air Force’s Young Investigator Research Program Award (2021), US Department of Energy’s Early Career Award (2022), the International Union of Pure and Applied Physics Early Career Scientist Prize (2022) and the US Office of Naval Research’s Young Investigator Award (2023). For Attendees' AttentionThis talk will be held online via Zoom. To attend, please join the Zoom meeting at https://hkust.zoom.us/j/92503111371 (Meeting ID: 925 0311 1371 / Passcode: 475970). About the Center For more information, please refer to the center website at https://iascqt.hkust.edu.hk/.
No. 23
Science Focus
Science Focus由理学院本科生在教职员的指导下编写及设计。旨在透过有趣的科研文章以启发及培育学生于科学及科研发现的兴趣。
就读
理学院
本科生
课程
注入新元素,使课程更加多样化,并增加跨学科课程,培养学生独立探索的能力。
研究生
课程
紧贴最新的科技发展,为学生提供具备启发性思维的训练。
学术单位
化学系
生命科学部
数学系
海洋科学系
物理系
化学系
化学系的教职员既充满朝气,亦具备群策群力的团队精神。他们活跃于化学研究的各个领域,其研究成果更获得国际认同。
生命科学部
生命科学部旨在促进生物科学的科研和教育之发展。
数学系
数学系的两大基柱为追求卓越的研究成果及承诺提供高效优质的教学课程。
海洋科学系
本系旨在带领各方认识不同领域的海洋科技,包括有关海洋保育,气候变化,海洋资源管理,社会经济及可持续发展的基础概念和实践。
物理系
物理系的使命乃由教学、科研及创新这铁三角组成。
科目研究
突破科研界限,追求新发现及建立崭新的研究模式。