Low-cost, high-performances and durable hydrogen fuel cells are crucial for the success of the global hydrogen economy and of Australia’s hydrogen roadmap. Currently, researchers are attempting to reduce the reliance of scarce and expensive platinum by synthesizing low-cost alternatives using non-precious metals (such as Fe, Mn, Co). Fe–N–C structures containing Fe-Nx active sites are amongst the most promising platinum group metal-free catalysts for the oxygen reduction reaction. However, despite narrowly closing the gap in half-wave potential in rotating disk electrode over the last decade, their highest performances and durability are inferior to commercial Pt in real hydrogen fuel cells, suggesting device-level challenges.



In this talk, we shed light on this gap using the distribution of relaxation times and X-ray computed tomography to quantify the proton transport and oxygen reduction reaction kinetics of a high-performance Fe–N–C catalyst (1.08 W cm-2) and a commercial platinum catalyst (1.7 W cm-2) in hydrogen fuel cells. Our work reveals that the slower proton transport and oxygen reduction reaction kinetics of Fe–N–C nanoporous carbon matrix considerably limits active site accessibility, unlike easily accessible Pt decorated on a carbon substrate. We also investigated the catalyst degradations and discovered that after the loss of electrochemical active iron sites, carbon corrosion and ionomer degradation sharply reduce the catalyst layer utilization and cause a slow performance decay. Furthermore, we introduced the largest super-resolved digital twin of the hydrogen fuel cell structure, allowing to visualize large scale (> 15 mm2) water management challenges using Lattice-Boltzmann simulations (Nature Communications, in press). This easily tuneable model will be crucial to further optimize the gas diffusion electrode and flow field structure to improve gas and water pathways to the active sites of high-loading non-precious metal catalysts.

5月3日
3:00pm - 4:00pm
地点
Room 2405 (Lifts 17-18), HKUST
讲者/表演者
Dr. Quentin Meyer
The University of New South Wales (UNSW)
主办单位
HKUST Energy Institute
联系方法
付款详情
对象
Faculty and staff, PG students, UG students
语言
英语
其他活动
11月22日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
11月8日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...