Recently, an intriguing phenomenon in the final stages of network training has been discovered and caught great interest, in which the last-layer features and classifiers collapse to simple but elegant mathematical structures: all training inputs are mapped to class-specific points in feature space, and the last-layer classifier converges to the dual of the features' class means while attaining the maximum possible margin. This phenomenon, dubbed Neural Collapse, persists across a variety of different network architectures, datasets, and even data domains. Moreover, a progressive neural collapse occurs from shallow to deep layers. This talk leverages the symmetry and geometry of Neural Collapse, and develops a rigorous mathematical theory to explain when and why it happens under the so-called unconstrained feature model. Based upon this, we show how it can be used to provide guidelines to understand and improve transferability with more efficient fine-tuning.

4月27日
10:00am - 11:00am
地点
Room 4475 (Lifts 25/26)
讲者/表演者
Prof. Qing QU
University of Michigan
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, PG students, UG students
语言
英语
其他活动
10月10日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Use of Large Animal Models to Investigate Brain Diseases
Abstract Genetically modified animal models have been extensively used to investigate the pathogenesis of age-dependent neurodegenerative diseases, such as Alzheimer (AD), Parkinson (PD), Hunti...
7月14日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...