Speaker: Professor Harunobu MITSUNUMA

Institution: Assistant Professor, The University of Tokyo, Tokyo, Japan

Hosted By: Professor Hugh NAKAMURA

 

Abstract

sp3C-H bond functionalization reactions are important in a fine chemical synthesis and energy fields. Until now, most sp3C-H bond functionalization has required high temperatures and directing groups. Here, we developed mild sp3C-H bond functionalization by multiple catalyst system combining HAT catalyst, photocatalyst, and metal catalyst. In this talk, I would like to present the latest results of the catalytic Grignard reaction by using this system.

 

About the Speaker

Dr. Harunobu Mitsunuma received his bachelor’s degree from The University of Tokyo in 2010 under the supervision of Prof. Masakatsu Shibasaki. Then he received Ph.D. of pharmaceutical science from The University of Tokyo in 2015 under the supervision of Professor Motomu Kanai. During his doctoral course, he joined Prof. John Hartwig's group at the University of California, Berkeley as a four-month visiting scholar. After getting Ph.D. he joined Dainippon Sumitomo Pharmaceutical Company in 2015. He studied as a medicinal chemist at the company. In 2017, he moved to Professor Motomu Kanai’s laboratory at the University of Tokyo as a post-doctoral fellow and became an assistant professor in 2018. He has also been JST PRESTO researcher since 2022. His research interest is the development of new synthetic methodology to accelerate drug development. Dr. Mitsunuma has been awarded Teijin Pharmaceutical Award in Synthetic Organic Chemistry (The Society of Synthetic Organic Chemistry Japan, 2019) and JISEDAI Symposium Lectureship Award (The Pharmaceutical Society Japan, 2020).

8月25日
2pm - 3:45pm
地點
Room 2306, 2/F, (Lifts 17-18), Academic Building, HKUST
講者/表演者
主辦單位
Department of Chemistry
聯絡方法
付款詳情
對象
PG students, Faculty and staff
語言
英語
其他活動
11月10日
研討會, 演講, 講座
IAS / School of Science Joint Lecture – Biochemical Mechanisms of Plant NLRs
Abstract Plant nucleotide binding and leucine-rich repeat (NLR) receptors mediate specific recognition of pathogen effectors to trigger defense responses against invading pathogens. NLRs, largely c...
11月7日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Mechanisms of Selective Protein Secretion
Abstract Secretory and membrane proteins account for a third of the eukaryotic proteome, and play important roles in tissue organization, nutrient uptake and cell-cell communication. To function in...