In this mini-series of talks, we will survey some recent advances in utilizing advances in machine learning to help tackle challenging tasks in scientific computing, focusing on numerical methods for solving high dimensional partial differential equations and high dimensional sampling problems. In particular, we will discuss theoretical understandings and guarantees for such methods and new challenges arise from the perspective of numerical analysis. 



 



In the first lecture, we will discuss score-based generative modeling (SGM), which is a highly successful approach for learning a probability distribution from data and generating further samples, based on learning the score function (gradient of log-pdf) and then using it to simulate a stochastic differential equation that transforms white noise into the data distribution.



 



We will talk about some recent results in convergence analysis of SGM and related methods. In particular, we established convergence of SGM applying to any distribution with bounded 2nd moment, relying only on a $L^2$-accurate score estimates, with polynomial dependence on all parameters and no reliance on smoothness or functional inequalities.

7月10日
10:00am - 11:00am
地點
Room 2463 (Lifts 25/26)
講者/表演者
Prof. Jianfeng LU
Duke University
主辦單位
Department of Mathematics
聯絡方法
付款詳情
對象
Alumni, Faculty and staff, PG students, UG students
語言
英語
其他活動
1月6日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chemical trans...
12月5日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...