Sobolev-subcritical fast diffusion with vanishing boundary condition leads to

finite-time extinction, with a vanishing profile selected by the initial datum. In a joint

work with R. McCann and C. Seis, we quantify the rate of convergence to this profile for

general smooth bounded domains. In rescaled time variable, the solution either converges

exponentially fast or algebraically slow. In the first case, the nonlinear dynamics are

well-approximated by exponentially decaying eigenmodes, giving a higher order

asymptotics. We also improve on a result of Bonforte and Figalli, by providing a new and

simpler approach which is able to accommodate the presence of zero modes.

10月14日
9:00am - 10:00am
地點
https://hkust.zoom.us/j/95235544779 (Passcode: 991961)
講者/表演者
Prof. Beom jun Choi
POSTECH, South Korea
主辦單位
Department of Mathematics
聯絡方法
付款詳情
對象
Alumni, Faculty and staff, PG students, UG students
語言
英語
其他活動
10月10日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Use of Large Animal Models to Investigate Brain Diseases
Abstract Genetically modified animal models have been extensively used to investigate the pathogenesis of age-dependent neurodegenerative diseases, such as Alzheimer (AD), Parkinson (PD), Hunti...
7月14日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...