The Faber-Krahn inequality states that the first Dirichlet eigenvalue of the Laplacian on a domain is greater than or equal to that of a ball of the same volume (and if equality holds, then the domain is a translate of a ball). Similar inequalities are available on other manifolds where balls minimize perimeter over sets of a given volume. I will present a new sharp stability theorem for such inequalities: if the eigenvalue of a set is close to a ball, then the first eigenfunction of that set must be close to the first eigenfunction of a ball, with the closeness quantified in an optimal way. I will also explain an application of this to the behavior of the Alt-Caffarelli-Friedman monotonicity formula, which has implications for free boundary problems with multiple phases. This is based on recent joint work with Mark Allen and Robin Neumayer.

10月29日
9:00am - 10:00am
地點
https://hkust.zoom.us/j/93734229393 (Passcode: 936334)
講者/表演者
Prof. Denis KRIVENTSOV
Rutgers University
主辦單位
Department of Mathematics
聯絡方法
付款詳情
對象
Alumni, Faculty and staff, PG students, UG students
語言
英語
其他活動
10月10日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Use of Large Animal Models to Investigate Brain Diseases
Abstract Genetically modified animal models have been extensively used to investigate the pathogenesis of age-dependent neurodegenerative diseases, such as Alzheimer (AD), Parkinson (PD), Hunti...
7月14日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...