Random fields with isotropic increments were introduced by Kolmogorov in the 1940s.  Gaussian random fields on N-dimensional Euclidean spaces with isotropic increments were classified as isotropic case and non-isotropic case by Yaglom in the 1950s.  Such models were used widely in statistical physics.  In particular, they were introduced to model a single particle in a random potential by Engel, Mezard and Parisi in 1990s.  A basic question is to count the number of critical points (or local minima, saddles, etc.) of the fields, which is commonly known as complexity.  In 2004, Fyodorov computed the large N limit of expected number of critical points for isotropic Gaussian random fields.  However, the non-isotropic case creates new difficulty.  In this talk, I will present some results on the large N behavior of complexity for this case. Connection to random matrices and large deviations will be explained.  This talk is based on joint work with Antonio Auffinger (Northwestern University).

8月13日
10:00am - 11:00am
地點
Zoom Meeting : https://hkust.zoom.us/j/91851256686 (Passcode: 732477)
講者/表演者
Prof. Qiang ZENG
University of Macau
主辦單位
Department of Mathematics
聯絡方法
付款詳情
對象
Faculty and staff, PG students, UG students
語言
英語
其他活動
11月22日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
11月8日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...