Time series forecasting is widely used in many fields including stock price forecasting, weather prediction, signal data distribution, lossless compression etc. Time series forecasting methods try to use history data and covariates data to predict the future values of the time series. Lossless compression contains two parts: a predictor and an encoder. Attention mechanism such as Transformer can be used to do the prediction part. Adding causality detection may reduce the number of data points considered and thus increase the compression rate without increment of space and running time. In this talk, we will discuss causal and attention and try to combine them on the time series prediction problem.

5月3日
11:00am - 12:00pm
地點
https://hkust.zoom.us/j/97757103798 (Passcode: 726832)
講者/表演者
Miss Jiamin WU
主辦單位
Department of Mathematics
聯絡方法
付款詳情
對象
Alumni, Faculty and staff, PG students, UG students
語言
英語
其他活動
3月24日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...
11月22日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...