The Weil representation is an important representation of the Metaplectic group, a double cover of the symplectic group. To study this representation, one can embed the even part into a degenerate principal series representation, which contains a spherical vector. Then one can compute the action of the metaplectic Hecke algebra on this spherical vector by a formula analogous to Macdonald’s formula on p-adic spherical functions. This method might be generalized to the case of loop groups.

5月8日
3:00pm - 4:00pm
地點
https://hkust.zoom.us/j/98697265817 (Passcode: 704828)
講者/表演者
Mr. Yanze CHEN
主辦單位
Department of Mathematics
聯絡方法
付款詳情
對象
Alumni, Faculty and staff, PG students, UG students
語言
英語
其他活動
10月10日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Use of Large Animal Models to Investigate Brain Diseases
Abstract Genetically modified animal models have been extensively used to investigate the pathogenesis of age-dependent neurodegenerative diseases, such as Alzheimer (AD), Parkinson (PD), Hunti...
7月14日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...