We define a localised Euler class for isotropic sections, and isotropic cones, in SO(N) bundles. We use this to give an algebraic definition of Borisov-Joyce's sheaf counting invariants on Calabi-Yau 4-folds. When a torus acts, we prove a localisation result. This talk is based on the joint work with Richard. P. Thomas.

10月28日
3:15pm - 4:15pm
地點
https://hkust.zoom.us/j/9584764665 (Passcode: dt4fold)
講者/表演者
Dr. Jeongseok OH
Korea Institute for Advanced Study (KIAS)
主辦單位
Department of Mathematics
聯絡方法
付款詳情
對象
Alumni, Faculty and staff, PG students, UG students
語言
英語
其他活動
10月10日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Use of Large Animal Models to Investigate Brain Diseases
Abstract Genetically modified animal models have been extensively used to investigate the pathogenesis of age-dependent neurodegenerative diseases, such as Alzheimer (AD), Parkinson (PD), Hunti...
7月14日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...