We study the Ricci flow on manifolds with boundary.  In the first part, we prove short-time existence and uniqueness of the solution, in which the boundary becomes instantaneously umbilic for positive time.  In the second part, we prove that the flow we constructed preserves natural boundary conditions.  More specifically, if the initial metric has a convex boundary, then the flow preserves positive curvature operator and the PIC1, PIC2 conditions.  Moreover, if the initial metric has a two-convex boundary, then the flow preserves the PIC condition.



 

12月28日
4:00pm - 5:00pm
地點
https://hkust.zoom.us/j/3142721729
講者/表演者
Mr. Aaron Tsz-Kiu CHOW
Columbia University
主辦單位
Department of Mathematics
聯絡方法
付款詳情
對象
Alumni, Faculty and staff, PG students, UG students
語言
英語
其他活動
5月15日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...
3月24日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...