Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users. However, an adversary may still be able to infer the private training data by attacking the released model. Differential privacy (DP) provides a statistical guarantee against such attacks, at a privacy of possibly degenerating the accuracy or utility of the trained models. In this paper, we apply a utility enhancement scheme based on Laplacian smoothing for differentially-private federated learning (DP-Fed-LS), where the parameter aggregation with injected Gaussian noise is improved in statistical precision. We provide tight closed-form privacy bounds for both uniform and Poisson subsampling and derive corresponding DP guarantees for differential private federated learning, with or without Laplacian smoothing. Experiments over MNIST, SVHN and Shakespeare datasets show that the proposed method can improve model accuracy with DP-guarantee under both subsampling mechanisms.
5月14日
11am - 12pm
地點
https://hkust.zoom.us/j/91364836963
講者/表演者
Mr. Zhicong LIANG
HKUST
主辦單位
Department of Mathematics
聯絡方法
mathseminar@ust.hk
付款詳情
對象
Alumni, Faculty and Staff, PG Students, UG Students
語言
英語
其他活動
5月24日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Confinement Controlled Electrochemistry: Nanopore beyond Sequencing
Abstract Nanopore electrochemistry refers to the promising measurement science based on elaborate pore structures, which offers a well-defined geometric confined space to adopt and characterize sin...
5月13日
研討會, 演講, 講座
IAS / School of Science Joint Lecture – Expanding the Borders of Chemical Reactivity
Abstract The lecture will demonstrate how it has been possible to expand the borders of cycloadditions beyond the “classical types of cycloadditions” applying organocatalytic activation principles....