In this paper, the multiscale unified gas-kinetic wave-particle (UGKWP) method has been implemented on three-dimensional unstructured mesh with the capability of large-scale parallel computing. By recovering the multiscale transport process in the unified gas-kinetic scheme (UGKS), the UGKWP method is a multiscale method as well with no requirement of the mesh size and the time step less than the mean free path and the mean collision time. The UGKWP method involves the evolution of both deterministic hydrodynamic waves as in traditional CFD solvers and the stochastic kinetic particles as in the direct simulation Monte Carlo (DSMC) method. With the novel wave-particle adaptive formulation, the UGKWP method is capable of simulating all Knudsen number flows from continuum to rarefied regimes with high efficiency. The implementation is validated by several three-dimensional test cases covering different Mach numbers and Knudsen numbers, including the shock tube problem, lid-driven cavity flow, and high-speed flow pass a cube. The parallel performance has been tested on the Tianhe-2 supercomputer, and good parallel scaling property has been observed up to one thousand processing cores. With high efficiency and low memory requirement due to particles' adaptation in velocity space, the UGKWP method shows great potentials in solving three-dimensional multiscale flows in continuum and rarefied regimes, especially for high-speed flows in the transition regime.
5月14日
4:00pm - 5:00pm
地點
https://hkust.zoom.us/j/97608926782
講者/表演者
Mr. Yipei CHEN
HKUST
主辦單位
Department of Mathematics
聯絡方法
mathseminar@ust.hk
付款詳情
對象
Alumni, Elderly, PG Students, UG Students
語言
英語
其他活動
1月6日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chemical trans...
12月5日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...