Non-convex optimization is widely involved in many machine learning problems, and it usually implicates a two-stage algorithm: a refined initialization followed by a local gradient search. Even though recent studies in global geometric analysis have revealed that empirical loss function of many low-rank related problems have favourable landscape in parameterized Euclidean space, it is generally difficult to analyze. In this talk, I will discuss a new unified framework for the analysis of low-rank matrix recovery problems. Instead of classical parameterization in Euclidean space, we considers emperical least square loss function on the manifold of low-rank matrices directly. We show that (1) if the measurement operator satisfies RIP condition with constantly small enough, there would be no spurious critical points, and manifold gradient descent would generate linear convergent sequence to global minimum (e.g. matrix sensing); (2) under weaker assumptions, but with RIP-like distance-preserving condition, global linear convergence rate to local minimum is still guaranteed (e.g. phase retrieval).
7月12日
10:00am - 11:00am
地點
Room 5506, Academic Building, (near Lifts 25-26)
講者/表演者
Ms. Zhenzhen LI
HKUST
主辦單位
Department of Mathematics
聯絡方法
mathseminar@ust.hk
付款詳情
對象
Alumni, Faculty and Staff, PG Students, UG Students
語言
英語
其他活動
10月10日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Use of Large Animal Models to Investigate Brain Diseases
Abstract Genetically modified animal models have been extensively used to investigate the pathogenesis of age-dependent neurodegenerative diseases, such as Alzheimer (AD), Parkinson (PD), Hunti...
7月14日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...