The semiclassical Schrodinger equation with multiscale and random potentials often appears when studying electron dynamics in heterogeneous quantum systems. As time evolves, the wavefunction develops high-frequency oscillations in both the physical space and the random space, which poses severe challenges for numerical methods. We propose a multiscale reduced basis method, where we construct multiscale reduced basis functions using an optimization method and the proper orthogonal decomposition method in the physical space and employ the quasi-Monte Carlo method in the random space. Our method is verified to be efficient: the spatial grid size is only proportional to the semiclassical parameter and (under suitable conditions) almost first order convergence rate is achieved in the random space with respect to the sample number.
9月13日
3:30pm - 4:30pm
地點
Room 3472, Academic Building (Lifts 25-26)
講者/表演者
Prof. Jingrun CHEN
Soochow University
Soochow University
主辦單位
Department of Mathematics
聯絡方法
mathsemnar@ust.hk
付款詳情
對象
Alumni, Faculty and Staff, PG Students, UG Students
語言
英語
其他活動
11月22日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract
Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
11月8日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract
After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...