A classical problem that traces back to Helmholtz and Kirchhoff is the understanding of the dynamics of solutions to the Euler equations of an inviscid incompressible fluid when the vorticity of the solution is initially concentrated near isolated points in 2d or vortex lines in 3d. We discuss some recent results on these solutions' existence and asymptotic behavior. We describe, with precise asymptotics, interacting vortices, and traveling helices. We rigorously establish the law of motion of “leapfrogging vortex rings”, initially conjectured by Helmholtz in 1858.

5月6日
4:00pm - 5:00pm
地點
https://hkust.zoom.us/j/96761384440 (Passcode: 085839)
講者/表演者
Prof. Manuel del Pino
University of Bath
主辦單位
Department of Mathematics
聯絡方法
付款詳情
對象
Alumni, Faculty and staff, PG students, UG students
語言
英語
其他活動
10月10日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Use of Large Animal Models to Investigate Brain Diseases
Abstract Genetically modified animal models have been extensively used to investigate the pathogenesis of age-dependent neurodegenerative diseases, such as Alzheimer (AD), Parkinson (PD), Hunti...
7月14日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...