A classical problem that traces back to Helmholtz and Kirchhoff is the understanding of the dynamics of solutions to the Euler equations of an inviscid incompressible fluid when the vorticity of the solution is initially concentrated near isolated points in 2d or vortex lines in 3d. We discuss some recent results on these solutions' existence and asymptotic behavior. We describe, with precise asymptotics, interacting vortices, and traveling helices. We rigorously establish the law of motion of “leapfrogging vortex rings”, initially conjectured by Helmholtz in 1858.

6 May 2022
4pm - 5pm
Where
https://hkust.zoom.us/j/96761384440 (Passcode: 085839)
Speakers/Performers
Prof. Manuel del Pino
University of Bath
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
24 May 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Confinement Controlled Electrochemistry: Nanopore beyond Sequencing
Abstract Nanopore electrochemistry refers to the promising measurement science based on elaborate pore structures, which offers a well-defined geometric confined space to adopt and characterize sin...
13 May 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture – Expanding the Borders of Chemical Reactivity
Abstract The lecture will demonstrate how it has been possible to expand the borders of cycloadditions beyond the “classical types of cycloadditions” applying organocatalytic activation principles....