A classical problem that traces back to Helmholtz and Kirchhoff is the understanding of the dynamics of solutions to the Euler equations of an inviscid incompressible fluid when the vorticity of the solution is initially concentrated near isolated points in 2d or vortex lines in 3d. We discuss some recent results on these solutions' existence and asymptotic behavior. We describe, with precise asymptotics, interacting vortices, and traveling helices. We rigorously establish the law of motion of “leapfrogging vortex rings”, initially conjectured by Helmholtz in 1858.

6 May 2022
4:00pm - 5:00pm
Where
https://hkust.zoom.us/j/96761384440 (Passcode: 085839)
Speakers/Performers
Prof. Manuel del Pino
University of Bath
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
6 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chem...
5 Dec 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...