A classical problem that traces back to Helmholtz and Kirchhoff is the understanding of the dynamics of solutions to the Euler equations of an inviscid incompressible fluid when the vorticity of the solution is initially concentrated near isolated points in 2d or vortex lines in 3d. We discuss some recent results on these solutions' existence and asymptotic behavior. We describe, with precise asymptotics, interacting vortices, and traveling helices. We rigorously establish the law of motion of “leapfrogging vortex rings”, initially conjectured by Helmholtz in 1858.

6 May 2022
4:00pm - 5:00pm
Where
https://hkust.zoom.us/j/96761384440 (Passcode: 085839)
Speakers/Performers
Prof. Manuel del Pino
University of Bath
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
15 May 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...
24 Mar 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...