Speaker: Professor Wei ZENG

Institution: School of Chemistry and Chemical Engineering, South China University of Technology

Hosted By: Professor Yong HUANG

Abstract

The Beckmann rearrangement, semi-pinacol rearrangement, Smiles rearrangement, Wolff rearrangement, and others have been successively developed to allow for diversified group migration via parallel moving pattern (Scheme 1-I). Meanwhile, the Cope and Claisen rearrangement and Witting rearrangement represent another type of cyclic transition state-based [3,3′]- and [2,3′]-sigmatropic shift, one of the most important features of these rearrangements involves synergetic C-X s bond (X = C, O, N, etc.) formation and double-bond migration at pericyclic reaction-sites (Scheme 1-II). To date, these classical group migratory and sigmatropic rearrangements have shown extremely potential in strategic synthesis of natural products, pharmaceuticals, and material molecules. However, it is surprising that 1,2- and 1,3-sigmatropic rearrangements, which only involve two different reaction-sites, have remained unexplored, this method will probably establish a new platform to enable unprecedented in-situ group-inversion rearrangement. Encouraged by our previous C-H, C-C, and C-S bond functionalization strategies,[1] herein we reported a novel and feasible carbon-skeleton rearrangement model through in-situ group inversion (Scheme 1-III).[2]

6月16日
2:00pm - 3:30pm
地點
Room 4503, 4/F (Lifts 25-26), Academic Building, HKUST
講者/表演者
主辦單位
Department of Chemistry
聯絡方法
付款詳情
對象
PG students, Faculty and staff
語言
英語
其他活動
1月6日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chemical trans...
12月5日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...