Speaker: Professor Leslie SCHOOP
Institution: Department of Chemistry, Princeton University
Host by: Prof. Haibin SU


Initiated by the discovery of topological insulators, topologically non-trivial materials have attracted immense interest in the physics community in the past decade. One of the latest additions to the field, the material class of topological semimetals, has grown at an extremely fast rate . While the prototype of a topological semimetal, graphene, has been known for a while, the first 3D analogues of graphene have only been discovered recently. This review, written from a chemistry perspective, intends to make the growing field of topological semimetals accessible to the wider community of materials scientists and scholars from related disciplines. To this end, we describe key features of topological semimetals, embedded in their electronic structure, and how they can be achieved based on chemical principles. We introduce the different classes of topological semimetals and review their salient representatives. Finally, selected properties and potential applications of these materials are discussed.

About the speaker

Dr. Schoop received her Diploma in Chemistry from Johannes Gutenberg University (2010) and PhD in Chemistry from Princeton University (2014). She then went on to work as a Minerva fast-track fellow under Professor Bettina Lotsch at the Max Planck Institute for Solid State Research (2015-2017). Dr. Schoop joined the Princeton University Department of Chemistry Faculty in 2017. In 2019 she won the Beckman Young Investigator award. The Schoop Lab is working at the interface of chemistry and physics, using chemical principles to find new materials with exotic physical properties.
2:30pm - 3:30pm
Room 2463, 2/F (Lifts 25/26), Academic Building, HKUST
Department of Chemistry
PG Students, Faculty and Staff
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Alzheimer’s Disease is Likely a Lipid-disorder Complication: an Example of Functional Lipidomics for Biomedical and Biological Research
Abstract Functional lipidomics is a frontier in lipidomics research, which identifies changes of cellular lipidomes in disease by lipidomics, uncovers the molecular mechanism(s) leading to the chan...
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Confinement Controlled Electrochemistry: Nanopore beyond Sequencing
Abstract Nanopore electrochemistry refers to the promising measurement science based on elaborate pore structures, which offers a well-defined geometric confined space to adopt and characterize sin...