With the increasing usage of the electronic limit order book (LOB) in modern financial markets, high-frequency algorithmic trading has captured over 70 percent of the whole trading volume in various financial markets. Market making as the markets' liquidity provider by simultaneously posting bid and ask limit orders on the limit order book, serves as a fundamental problem in high-frequency trading, and attracts the attention from a lot of disciplines. Key issues in market making strategies include (1) how to design the goal of an optimal market making strategy, (2) how to dynamically adjust bid and ask orders to optimize the goal, and (3) how to control the risk during the execution such as inventory risks, adverse selection risks and model uncertainty risks. Therefore, market making is naturally framed as a Markov decision process (MDP) and reinforcement learning techniques provide a way to optimize these problems. In this study, we apply a deep reinforcement learning framework for market making strategies, especially for cryptocurrency markets. Different optimization algorithms for the reinforcement learning framework are compared based on the risk-adjusted return measure. This work contributes to our understanding on the effectiveness of reinforcement learning for market making problems. 

5月2日
10:00am - 11:00am
地点
https://hkust.zoom.us/j/96985699270 (Passcode: 976801)
讲者/表演者
Mr. Jiafa HE
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, PG students, UG students
语言
英语
其他活动
3月24日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...
11月22日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...