Many partial differential equations may have solutions with nearly singular behaviors, such as shock waves and boundary layers. This can lead to the inefficiency of discretizing the functions using uniform mesh when numerical methods are applied, because very fine mesh is required to resolve the solution behavior in the nearly singular regions. In these cases, a nonuniform adaptive mesh is preferred, where a higher proportion of points are clustered only where there is large solution variation. We consider the r-refinement (moving mesh) methods, the idea of which is to relocate the existing nodes under certain criteria during numerical computation, and the PDEs are discretized on the moving mesh. We first review the techniques in the moving mesh finite element methods, and then give an application of moving mesh methods to structure topology optimization, where the adaptive finite element meshes are concentrated near the boundary of material in the process of optimization, which can accurately capture the boundary position with fewer mesh points required.

5月4日
10:30am - 11:30am
地点
https://hkust.zoom.us/j/97869196697 (Passcode: 331277)
讲者/表演者
Miss Zheyue FANG
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, PG students, UG students
语言
英语
其他活动
1月6日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chemical trans...
12月5日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...