We propose a low-rank Gaussian mixture model (LrMM) assuming each matrix-valued observation has a planted low-rank structure. Minimax lower bounds for estimating the underlying low-rank matrix are established allowing a whole range of sample sizes and signal strength. Under a minimal condition on signal strength, referred to as the information-theoretical limit or statistical limit, we prove the minimax optimality of a maximum likelihood estimator which, in general, is computationally infeasible. If the signal is stronger than a certain threshold, called the computational limit, we design a computationally fast estimator based on spectral aggregation and demonstrate its minimax optimality. Moreover, when the signal strength is smaller than the computational limit, we provide evidences based on the low-degree likelihood ratio framework to claim that no polynomial-time algorithm can consistently recover the underlying low-rank matrix. Our results reveal multiple phase transitions in the minimax error rates and the statistical-to-computational gap.

4月25日
9:30am - 10:30am
地点
https://hkust.zoom.us/j/97582756639 (Passcode: hkust)
讲者/表演者
Mr. Zhongyuan LYU
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, PG students, UG students
语言
英语
其他活动
3月24日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...
11月22日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...