One special feature for the Ricci flow in dimension 3 is the Hamilton-Ivey estimate. The curvature pinching estimate provides a lot of information about the ancient solution and plays a crucial role in the singularity formation of the flow in dimension 3. We study the pinching estimate on 3 dimensional expanding and 4 dimensional steady gradient Ricci solitons. A sufficient condition for a 3-dimensional expanding soliton to have positive curvature is established. This condition is satisfied by a large class of conical expanders. As an application, we show that any 3-dimensional gradient Ricci expander C^2 asymptotic to certain cones is rotationally symmetric. We also prove that the norm of the curvature tensor is bounded by the scalar curvature on 4 dimensional non Ricci flat steady soliton singularity model and derive a quantitative lower bound of the curvature operator for 4-dimensional steady solitons with linear scalar curvature decay and proper potential function. This talk is based on a joint work with Zilu Ma and Yongjia Zhang.

8月10日
3:40pm - 4:40pm
地点
Room 3494 (near Lifts 25/26), OR https://hkust.zoom.us/j/92883040936 (Passcode: 558687)
讲者/表演者
Prof. Pak Yeung CHAN
University of California San Diego
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, PG students, UG students
语言
英语
其他活动
11月22日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
11月8日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...