We study the existence of positive functions K in C^1(S^n) such that the conformal Q-curvature equation Pm(v) = K v^{n*} on S^n has a singular positive solution v whose singular set is a single point, where m is an integer satisfying 1 <= m < n/2 and Pm is the intertwining operator of order 2m. More specifically, we show that when n => 2 m + 4, every positive function in C^1(S^n) can be approximated in the C^1(S^n) norm by a positive function K in C^1(S^n) such that the equation has a singular positive solution whose singular set is a single point. Moreover, such a solution can be constructed to be arbitrarily large near its singularity.

4月21日
10:00am - 11:00am
地点
https://hkust.zoom.us/j/97977020004 (Passcode:188)
讲者/表演者
Mr. Xusheng DU
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, PG students, UG students
语言
英语
其他活动
1月6日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chemical trans...
12月5日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...