In this seminar, we will discuss private federated learning. We will firstly provide new optimization error bounds for differential private federated learning with Laplacian Smoothing (DP-Fed-LS) and heterogeneous data. The error bounds help us better understand the influence of errors introduced by differential privacy, heterogeneity of data and variance of stochastic gradient descent over the convergence of DP-Fed-LS. For another, we will also explore how to push the limit of private federated learning by improving current gradient attack. Experiment shows that our proposed new attack can recover training data with high quality while the targeted model is untrained and when the batch size is small. Attacks on more realistic settings are to be discussed.

4月29日
10:15am - 11:15am
地点
https://hkust.zoom.us/j/99997376210 (Passcode: 214192)
讲者/表演者
Mr. Zhicong LIANG
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, PG students, UG students
语言
英语
其他活动
11月22日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
11月8日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...