In this talk, I will introduce a new geometric inequality: the Sphere Covering Inequality. The inequality states that the total area of two distinct surfaces with Gaussian curvature less than 1, which are also conformal to the Euclidean unit disk with the same conformal factor on the boundary, must be at least 4π. In other words, the areas of these surfaces must cover the whole unit sphere after a proper rearrangement. We apply the Sphere Covering Inequality to show the best constant of a Moser-Trudinger type inequality conjectured by A. Chang and P. Yang. Other applications of this inequality include the classification of certain Onsager vortices on the sphere, the radially symmetry of solutions to Gaussian curvature equation on the plane, classification of solutions for mean field equations on flat tori and the standard sphere, etc. The resolution of several open problems in these areas will be presented.
12月23日
11:00am - 12:00pm

地点
Room 3472, Academic Building (Lifts 25-26)
讲者/表演者
Prof. Changfeng Gui
University of Texas at San Antonio
University of Texas at San Antonio
主办单位
Department of Mathematics
联系方法
mathseminar@ust.hk
付款详情
对象
Alumni, Faculty and Staff, PG Students, UG Students
语言
英语
其他活动

5月15日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract
Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...