We consider the problem of minimizing an objective function without any derivative information. Such optimization is called zeroth-order, derivative-free, or black-box optimization. When the problem dimension is large-scale, the existing zeroth-order state-of-the-arts often suffer the curse of dimensionality. In this talk, we explore a novel compressible gradients assumption and propose two new methods, namely ZORO and SCOBO, for high-dimensional zeroth-order optimization. In particular, ZORO uses evaluations of the objective function and SCOBO uses only comparison information between points. Furthermore, we propose a block coordinate descent algorithm, coined ZO-BCD, for ultra-high-dimensional settings. We show the query complexities of ZORO, SCOBO, and ZO-BCD are only logarithmically dependent on the problem dimension. Numerical experiments show that the proposed methods outperform the state-of-the-arts on both synthetic and real datasets.

4月22日
10:30am - 12:00pm
地点
https://hkust.zoom.us/j/99988827320 (Passcode: hkust)
讲者/表演者
Prof. HanQin CAI
UCLA
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, PG students, UG students
语言
英语
其他活动
5月15日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...
3月24日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...