We consider the problem of minimizing an objective function without any derivative information. Such optimization is called zeroth-order, derivative-free, or black-box optimization. When the problem dimension is large-scale, the existing zeroth-order state-of-the-arts often suffer the curse of dimensionality. In this talk, we explore a novel compressible gradients assumption and propose two new methods, namely ZORO and SCOBO, for high-dimensional zeroth-order optimization. In particular, ZORO uses evaluations of the objective function and SCOBO uses only comparison information between points. Furthermore, we propose a block coordinate descent algorithm, coined ZO-BCD, for ultra-high-dimensional settings. We show the query complexities of ZORO, SCOBO, and ZO-BCD are only logarithmically dependent on the problem dimension. Numerical experiments show that the proposed methods outperform the state-of-the-arts on both synthetic and real datasets.

22 Apr 2021
10:30am - 12:00pm
Where
https://hkust.zoom.us/j/99988827320 (Passcode: hkust)
Speakers/Performers
Prof. HanQin CAI
UCLA
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
20 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - A Journey to Defect Science and Engineering
Abstract A defect in a material is one of the most important concerns when it comes to modifying and tuning the properties and phenomena of materials. The speaker will review his study of defec...
6 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chemical trans...