Deep neural networks can predict well even when fitting noisy data. The phenomenon is called benign overfitting. In this seminar, we analyze the overparametrized model under the adversarial perturbation, showing the fitting noise leads to sensitive models to the adversarial perturbation. In contrast to the natural risk where noise cancels out for each dimension, the small perturbation of each feature accumulates to significant change of the output in the adversarial attack.  And we also study the adversarial training in these overparametrized models, showing that while it can increase the robustness of the model, it leads to distinct parameter to the oracle and decreases in performance for natural data.

5月6日
10:00am - 11:00am
地点
https://hkust.zoom.us/j/92129409608 (Passcode: 568117)
讲者/表演者
Mr. Zhichao HUANG
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, PG students, UG students
语言
英语
其他活动
7月14日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...
5月15日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...