Early stopping is a widely-used regularization technique to avoid overfitting in iterative algorithms. In particular, Split Linearized Bregman Iteration methods are often equipped with an early stopping rule to achieve model selection consistency to recover the structural sparsity of parameters. However, theoretical early stopping rule with model selection consistency requires the incoherence condition, which is unknown in applications. In this work, we propose a data adaptive early stopping rule towards the False Discovery Rate (FDR) control under the framework of Knockoff methods. An inflated FDR is proved under a relaxation of the exchangeability condition in traditional Knockoff methods. The effectiveness of the proposed method is demonstrated by both simulations and two real world application examples, Alzheimer’s Disease (AD) and partial order ranking of basketball teams.

5月2日
11:00am - 12:00pm
地點
https://hkust.zoom.us/j/94401529969 (Passcode: hkust)
講者/表演者
Miss Wenqi ZENG
HKUST
主辦單位
Department of Mathematics
聯絡方法
付款詳情
對象
Alumni, Faculty and staff, PG students, UG students
語言
英語
其他活動
10月10日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Use of Large Animal Models to Investigate Brain Diseases
Abstract Genetically modified animal models have been extensively used to investigate the pathogenesis of age-dependent neurodegenerative diseases, such as Alzheimer (AD), Parkinson (PD), Hunti...
7月14日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...