Conductivity imaging from various observational data represents one fundamental task in medical imaging. In this talk, we discuss numerical methods for identifying the conductivity parameters in elliptic PDEs. Commonly, a regularized formulation consists of a data fidelity and a regularizer is employed, and then it is discretized using finite difference method, finite element methods or deep neural networks in practical computation. One key issue is to establish a priori error estimates for the recovered conductivity distribution. In this talk, we discuss our recent findings on using deep neural networks for this class of problems, by effectively utilizing relevant stability results.
6月19日
4:00pm - 5:00pm
地點
Room 4475 (Lifts 25/26)
講者/表演者
Prof. Bangti JIN
The Chinese University of Hong Kong
The Chinese University of Hong Kong
主辦單位
Department of Mathematics
聯絡方法
付款詳情
對象
Alumni, Faculty and staff, PG students, UG students
語言
英語
其他活動
11月22日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract
Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
11月8日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract
After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...