In this talk, we will examine a PDE aspect of the Yamabe flow as an energy-critical parabolic equation of the fast-diffusion type. It is well-known that under the validity of the positive mass theorem, the Yamabe flow on a smooth closed Riemannian manifold $M$ exists for all time $t$ and uniformly converges to a solution to the Yamabe problem on $M$ as $t \to \infty$. We will observe that such results no longer hold if some arbitrarily small and smooth perturbation is imposed on it, by constructing solutions to the perturbed flow that blow up at multiple points on $M$ in the infinite time. We also concern the stability of the blow-up phenomena under a negativity condition on the Ricci curvature at blow-up points. This is joint work with Monica Musso (University of Bath, UK).

9月17日
9:00am - 10:00am
地點
https://hkust.zoom.us/j/97445907096 (Passcode: 875622)
講者/表演者
Prof. Seunghyeok KIM
Hanyang University, South Korea
主辦單位
Department of Mathematics
聯絡方法
付款詳情
對象
Alumni, Faculty and staff, PG students, UG students
語言
英語
其他活動
7月14日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...
5月15日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...