In this talk, we will examine a PDE aspect of the Yamabe flow as an energy-critical parabolic equation of the fast-diffusion type. It is well-known that under the validity of the positive mass theorem, the Yamabe flow on a smooth closed Riemannian manifold $M$ exists for all time $t$ and uniformly converges to a solution to the Yamabe problem on $M$ as $t \to \infty$. We will observe that such results no longer hold if some arbitrarily small and smooth perturbation is imposed on it, by constructing solutions to the perturbed flow that blow up at multiple points on $M$ in the infinite time. We also concern the stability of the blow-up phenomena under a negativity condition on the Ricci curvature at blow-up points. This is joint work with Monica Musso (University of Bath, UK).

17 Sep 2021
9:00am - 10:00am
Where
https://hkust.zoom.us/j/97445907096 (Passcode: 875622)
Speakers/Performers
Prof. Seunghyeok KIM
Hanyang University, South Korea
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
6 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chem...
5 Dec 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...