Differentially private synthetic data provide a powerful mechanism to enable data analysis while protecting sensitive information about individuals. We first present a highly effective algorithmic approach for generating differentially private synthetic data in a bounded metric space with near-optimal utility guarantees under the Wasserstein distance. When the data lie in a high-dimensional space, the accuracy of the synthetic data suffers from the curse of dimensionality. We then propose an algorithm to generate low-dimensional private synthetic data efficiently from a high-dimensional dataset. A key step in our algorithm is a private principal component analysis (PCA) procedure with a near-optimal accuracy bound. Based on joint work with Yiyun He (UC Irvine), Roman Vershynin (UC Irvine), and Thomas Strohmer (UC Davis).

8月9日
10:00am - 11:00am
地點
Room 4504 (Lifts 25/26)
講者/表演者
Prof. Yizhe ZHU
University of California, Irvine
主辦單位
Department of Mathematics
聯絡方法
付款詳情
對象
Alumni, Faculty and staff, PG students, UG students
語言
英語
其他活動
1月20日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - A Journey to Defect Science and Engineering
Abstract A defect in a material is one of the most important concerns when it comes to modifying and tuning the properties and phenomena of materials. The speaker will review his study of defec...
1月6日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chemical trans...