Differentially private synthetic data provide a powerful mechanism to enable data analysis while protecting sensitive information about individuals. We first present a highly effective algorithmic approach for generating differentially private synthetic data in a bounded metric space with near-optimal utility guarantees under the Wasserstein distance. When the data lie in a high-dimensional space, the accuracy of the synthetic data suffers from the curse of dimensionality. We then propose an algorithm to generate low-dimensional private synthetic data efficiently from a high-dimensional dataset. A key step in our algorithm is a private principal component analysis (PCA) procedure with a near-optimal accuracy bound. Based on joint work with Yiyun He (UC Irvine), Roman Vershynin (UC Irvine), and Thomas Strohmer (UC Davis).

9 Aug 2023
10:00am - 11:00am
Where
Room 4504 (Lifts 25/26)
Speakers/Performers
Prof. Yizhe ZHU
University of California, Irvine
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
5 Dec 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...
10 Oct 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Use of Large Animal Models to Investigate Brain Diseases
Abstract Genetically modified animal models have been extensively used to investigate the pathogenesis of age-dependent neurodegenerative diseases, such as Alzheimer (AD), Parkinson (PD), Hunti...