A recent line of research on deep learning shows that the training of extremely wide neural networks can be characterized by a kernel function called neural tangent kernel (NTK). However, it is known that this type of result does not perfectly match the practice, as NTK-based analysis requires the network weights to stay very close to their initialization throughout training, and cannot handle regularizers or gradient noises. In this talk, I will present a generalized neural tangent kernel analysis and show that noisy gradient descent with weight decay can still exhibit a ``kernel-like'' behavior. This implies that the training loss converges linearly up to a certain accuracy. I will also discuss the generalization error of an infinitely wide two-layer neural network trained by noisy gradient descent with weight decay.
8月14日
11:00am - 12:00pm
地點
https://hkust.zoom.us/j/5616960008
講者/表演者
Dr. Yuan CAO
UCLA
主辦單位
Department of Mathematics
聯絡方法
mathseminar@ust.hk
付款詳情
對象
Alumni, Faculty and Staff, PG Students, UG Students
語言
英語
其他活動
11月22日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
11月8日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...