A recent line of research on deep learning shows that the training of extremely wide neural networks can be characterized by a kernel function called neural tangent kernel (NTK). However, it is known that this type of result does not perfectly match the practice, as NTK-based analysis requires the network weights to stay very close to their initialization throughout training, and cannot handle regularizers or gradient noises. In this talk, I will present a generalized neural tangent kernel analysis and show that noisy gradient descent with weight decay can still exhibit a ``kernel-like'' behavior. This implies that the training loss converges linearly up to a certain accuracy. I will also discuss the generalization error of an infinitely wide two-layer neural network trained by noisy gradient descent with weight decay.
14 Aug 2020
11:00am - 12:00pm
Where
https://hkust.zoom.us/j/5616960008
Speakers/Performers
Dr. Yuan CAO
UCLA
Organizer(S)
Department of Mathematics
Contact/Enquiries
mathseminar@ust.hk
Payment Details
Audience
Alumni, Faculty and Staff, PG Students, UG Students
Language(s)
English
Other Events
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
8 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...