A recent line of research on deep learning shows that the training of extremely wide neural networks can be characterized by a kernel function called neural tangent kernel (NTK). However, it is known that this type of result does not perfectly match the practice, as NTK-based analysis requires the network weights to stay very close to their initialization throughout training, and cannot handle regularizers or gradient noises. In this talk, I will present a generalized neural tangent kernel analysis and show that noisy gradient descent with weight decay can still exhibit a ``kernel-like'' behavior. This implies that the training loss converges linearly up to a certain accuracy. I will also discuss the generalization error of an infinitely wide two-layer neural network trained by noisy gradient descent with weight decay.
14 Aug 2020
11:00am - 12:00pm
Where
https://hkust.zoom.us/j/5616960008
Speakers/Performers
Dr. Yuan CAO
UCLA
Organizer(S)
Department of Mathematics
Contact/Enquiries
mathseminar@ust.hk
Payment Details
Audience
Alumni, Faculty and Staff, PG Students, UG Students
Language(s)
English
Other Events
20 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - A Journey to Defect Science and Engineering
Abstract A defect in a material is one of the most important concerns when it comes to modifying and tuning the properties and phenomena of materials. The speaker will review his study of defec...
6 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chemical trans...