Recently, there has been a great deal of research attention on understanding the convergence behavior of first-order methods using tools from continuous dynamical systems. The alternating direction method of multipliers (ADMM) is a widely used first-order method for solving optimization problems arising from machine learning and statistics, and the stochastic versions of ADMM plays a key role in many modern large-scale machine learning problems. We introduce a unified algorithmic framework called generalized stochastic ADMM and investigate it via a continuous-time analylsis. We rigorously proved that under some proper scaling, the trajectory of stochastic ADMM weakly converges to the trajectory of the stochastic differential equation with small noise parameters. Our analysis also provides a theoretical explanation on why the relaxation parameter should be chosen between 0 and 2.
6月30日
11:00am - 12:00pm
地點
https://hkust.zoom.us/j/5616960008
講者/表演者
Dr. Huizhuo YUAN
Peking University
主辦單位
Department of Mathematics
聯絡方法
mathseminar@ust.hk
付款詳情
對象
Alumni, Faculty and Staff, PG Students, UG Students
語言
英語
其他活動
1月6日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chemical trans...
12月5日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...