Recently, there has been a great deal of research attention on understanding the convergence behavior of first-order methods using tools from continuous dynamical systems. The alternating direction method of multipliers (ADMM) is a widely used first-order method for solving optimization problems arising from machine learning and statistics, and the stochastic versions of ADMM plays a key role in many modern large-scale machine learning problems. We introduce a unified algorithmic framework called generalized stochastic ADMM and investigate it via a continuous-time analylsis. We rigorously proved that under some proper scaling, the trajectory of stochastic ADMM weakly converges to the trajectory of the stochastic differential equation with small noise parameters. Our analysis also provides a theoretical explanation on why the relaxation parameter should be chosen between 0 and 2.
6月30日
11:00am - 12:00pm
地點
https://hkust.zoom.us/j/5616960008
講者/表演者
Dr. Huizhuo YUAN
Peking University
Peking University
主辦單位
Department of Mathematics
聯絡方法
mathseminar@ust.hk
付款詳情
對象
Alumni, Faculty and Staff, PG Students, UG Students
語言
英語
其他活動
11月22日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract
Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
11月8日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract
After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...