In this talk, I will first introduce the mirror symmetry for Calabi-Yau threefolds, which describes the genus zero structures of the Gromow-Witten theory. Then I will talk about the Feynman rule developed by Bershadsky-Cecotti-Ooguri-Vafa, which determines the higher genus structures.  Such a conjectural Feynman rule was proved for the quintic threefolds case, by Huai Liang Chang, Jun Li, Weiping Li and myself. We will consider its generalization in this talk.

4月28日
10:30am - 11:30am
地點
https://hkust.zoom.us/j/9584764665 (Passcode: 2021)
講者/表演者
Prof. Shuai GUO
Beijing University
主辦單位
Department of Mathematics
聯絡方法
付款詳情
對象
Alumni, Faculty and staff, HKUST Family, PG students
語言
英語
其他活動
3月24日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...
11月22日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...