In this talk, I will first introduce the mirror symmetry for Calabi-Yau threefolds, which describes the genus zero structures of the Gromow-Witten theory. Then I will talk about the Feynman rule developed by Bershadsky-Cecotti-Ooguri-Vafa, which determines the higher genus structures. Such a conjectural Feynman rule was proved for the quintic threefolds case, by Huai Liang Chang, Jun Li, Weiping Li and myself. We will consider its generalization in this talk.
4月28日
10:30am - 11:30am
地点
https://hkust.zoom.us/j/9584764665 (Passcode: 2021)
讲者/表演者
Prof. Shuai GUO
Beijing University
Beijing University
主办单位
Department of Mathematics
联系方法
付款详情
对象
Alumni, Faculty and staff, HKUST Family, PG students
语言
英语
其他活动
11月22日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract
Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
11月8日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract
After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...