We tackle the problem of variable selection with a focus on discovering interactions between variables. With p variables, there are O(p^k) possible interactions of order k making exhaustive search infeasible. We show that it is nonetheless possible to identify the variables involved in interactions (of any order) with only linear computation cost, O(p), and in a nonparametric fashion. Our algorithm is based on minimizing a non-convex objective, carefully designed to have a favorable landscape. We provide finite sample guarantees on both false positives (we show all stationary points of the objective exclude noise variables) and false negatives (we characterize the sample sizes needed for gradient descent to converge to a "good’’ stationary point).

2月25日
11:00am - 12:00pm
地點
https://hkust.zoom.us/j/ 99988827320 (Passcode: hkust)
講者/表演者
Dr. Feng RUAN
UC Berkeley
主辦單位
Department of Mathematics
聯絡方法
付款詳情
對象
Alumni, Faculty and staff, PG students, UG students
語言
英語
其他活動
7月14日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...
5月15日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...