We tackle the problem of variable selection with a focus on discovering interactions between variables. With p variables, there are O(p^k) possible interactions of order k making exhaustive search infeasible. We show that it is nonetheless possible to identify the variables involved in interactions (of any order) with only linear computation cost, O(p), and in a nonparametric fashion. Our algorithm is based on minimizing a non-convex objective, carefully designed to have a favorable landscape. We provide finite sample guarantees on both false positives (we show all stationary points of the objective exclude noise variables) and false negatives (we characterize the sample sizes needed for gradient descent to converge to a "good’’ stationary point).

25 Feb 2021
11:00am - 12:00pm
Where
https://hkust.zoom.us/j/ 99988827320 (Passcode: hkust)
Speakers/Performers
Dr. Feng RUAN
UC Berkeley
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
20 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - A Journey to Defect Science and Engineering
Abstract A defect in a material is one of the most important concerns when it comes to modifying and tuning the properties and phenomena of materials. The speaker will review his study of defec...
6 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chemical trans...