We study robust PCA for the fully observed setting, which is about separating a low rank matrix L and a sparse matrix S from their sum D=L+S. In this talk, a new algorithm, dubbed accelerated alternating projections, is introduced for robust PCA which significantly improves the computational efficiency of the existing non-convex algorithms. Exact recovery guarantee has been established which shows linear convergence of the proposed algorithm. Empirical performance evaluations confirm the advantage of our algorithm over other state-of-the-art algorithms for robust PCA. Furthermore, we extend our method to the low-rank Hankel matrix, with its application to the spectrally sparse signals.
3月25日
3:00pm - 4:00pm
地點
https://hkust.zoom.com.cn/j/590198340
講者/表演者
Dr. HanQin CAI
University of California at Los Angeles
主辦單位
Department of Mathematics
聯絡方法
mathseminar@ust.hk
付款詳情
對象
Alumni, Faculty and Staff, PG Students, UG Students
語言
英語
其他活動
1月6日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chemical trans...
12月5日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...