We study robust PCA for the fully observed setting, which is about separating a low rank matrix L and a sparse matrix S from their sum D=L+S. In this talk, a new algorithm, dubbed accelerated alternating projections, is introduced for robust PCA which significantly improves the computational efficiency of the existing non-convex algorithms. Exact recovery guarantee has been established which shows linear convergence of the proposed algorithm. Empirical performance evaluations confirm the advantage of our algorithm over other state-of-the-art algorithms for robust PCA. Furthermore, we extend our method to the low-rank Hankel matrix, with its application to the spectrally sparse signals.
3月25日
3:00pm - 4:00pm
地点
https://hkust.zoom.com.cn/j/590198340
讲者/表演者
Dr. HanQin CAI
University of California at Los Angeles
主办单位
Department of Mathematics
联系方法
mathseminar@ust.hk
付款详情
对象
Alumni, Faculty and Staff, PG Students, UG Students
语言
英语
其他活动
11月22日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
11月8日
研讨会, 演讲, 讲座
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...