In this talk, we consider the large time behavior of strong solutions to the one-dimensional, compressible Navier-Stokes system for a viscous and heat conducting ideal polytropic gas, when the viscosity is constant and the heat conductivity is proportional to a positive power of the temperature. Both the specific volume and the temperature are proved to be bounded from below and above independently of time. Moreover, it is shown that the global solution is nonlinearly exponentially stable as time tends to infinity. Note that the conditions imposed on the initial data are the same as those of the constant heat conductivity case [Kazhikhov- Shelukhin, J. Appl. Math. Mech. 41(1977); Kazhikhov, Boundary Value Problems for Hydrodynamical Equations, 50(1981)] and can be arbitrarily large. Therefore, our result can be regarded as a natural generalization of the Kazhikhov's ones for the constant heat conductivity case to the degenerate and nonlinear one.
1月17日
3pm - 4pm
地點
Room 4504, Academic Building (Lifts 25-26)
講者/表演者
Prof. Xiaoding SHI
Beijing Chemical Technology University
主辦單位
Department of Mathematics
聯絡方法
mathseminar@ust.hk
付款詳情
對象
Alumni, Faculty and Staff, PG Students, UG Students
語言
英語
其他活動
5月24日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Confinement Controlled Electrochemistry: Nanopore beyond Sequencing
Abstract Nanopore electrochemistry refers to the promising measurement science based on elaborate pore structures, which offers a well-defined geometric confined space to adopt and characterize sin...
5月13日
研討會, 演講, 講座
IAS / School of Science Joint Lecture – Expanding the Borders of Chemical Reactivity
Abstract The lecture will demonstrate how it has been possible to expand the borders of cycloadditions beyond the “classical types of cycloadditions” applying organocatalytic activation principles....