In this talk, we consider the large time behavior of strong solutions to the one-dimensional, compressible Navier-Stokes system for a viscous and heat conducting ideal polytropic gas, when the viscosity is constant and the heat conductivity is proportional to a positive power of the temperature. Both the specific volume and the temperature are proved to be bounded from below and above independently of time. Moreover, it is shown that the global solution is nonlinearly exponentially stable as time tends to infinity. Note that the conditions imposed on the initial data are the same as those of the constant heat conductivity case [Kazhikhov- Shelukhin, J. Appl. Math. Mech. 41(1977); Kazhikhov, Boundary Value Problems for Hydrodynamical Equations, 50(1981)] and can be arbitrarily large. Therefore, our result can be regarded as a natural generalization of the Kazhikhov's ones for the constant heat conductivity case to the degenerate and nonlinear one.
1月17日
3:00pm - 4:00pm
地點
Room 4504, Academic Building (Lifts 25-26)
講者/表演者
Prof. Xiaoding SHI
Beijing Chemical Technology University
主辦單位
Department of Mathematics
聯絡方法
mathseminar@ust.hk
付款詳情
對象
Alumni, Faculty and Staff, PG Students, UG Students
語言
英語
其他活動
5月15日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...
3月24日
研討會, 演講, 講座
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...