In this talk, we consider the large time behavior of strong solutions to the one-dimensional, compressible Navier-Stokes system for a viscous and heat conducting ideal polytropic gas, when the viscosity is constant and the heat conductivity is proportional to a positive power of the temperature. Both the specific volume and the temperature are proved to be bounded from below and above independently of time. Moreover, it is shown that the global solution is nonlinearly exponentially stable as time tends to infinity. Note that the conditions imposed on the initial data are the same as those of the constant heat conductivity case [Kazhikhov- Shelukhin, J. Appl. Math. Mech. 41(1977); Kazhikhov, Boundary Value Problems for Hydrodynamical Equations, 50(1981)] and can be arbitrarily large. Therefore, our result can be regarded as a natural generalization of the Kazhikhov's ones for the constant heat conductivity case to the degenerate and nonlinear one.
17 Jan 2020
3:00pm - 4:00pm
Where
Room 4504, Academic Building (Lifts 25-26)
Speakers/Performers
Prof. Xiaoding SHI
Beijing Chemical Technology University
Organizer(S)
Department of Mathematics
Contact/Enquiries
mathseminar@ust.hk
Payment Details
Audience
Alumni, Faculty and Staff, PG Students, UG Students
Language(s)
English
Other Events
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
8 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...